evomag.ro
    science-fiction fantasy poezie eseu arte vizuale
Caută :  
Resurse Contact
Jocul meu pentru Dumnezeu şi ai lui  -  Sclipiri de Soare  -  Luminile oraşului XII  -  Drum bun  -  Chat Room  -  Poporul perfect  -  Drum fără întoarcere  -  Fabrica de vise  -  Omul apropiat  -  Transcendere  -  Altă Poveste(?) modernă  -  Proză absurdă  -  Improvizaţie (teatru burlesc)  -  Luminile oraşului IV  -  Pure Evil  -  Uitare  -  Caiet de regie  -  Acolo sus, vulbul  -  Dialog cu Ion Luca Caragiale  -  Înainte ca toate imaginile să dispară...  -  Strada Cosmos  -  La chambre quotidienne (fr)  -  Petrecerea  -  Zori  -  Crist sideral  -  Călătorie la Muzeul Quale  -  Războiul lumilor  -  Vikingul  -  Obsesia  -  Dl. Ics  -  La frontieră  -  Praf minune  -  Greaţă  -  Tocăniţa de ciuperci  -  Cinci personaje în căutarea unor măşti vesele  -  Aether pro narcosi  -  Misiunea  -  "Coincidenţă !" au strigat  -  Fiii lui Rawser  -  În căutarea zborului  -  Comando Fox  -  Revederea de 20 de ani  -  Babylon Five: Mercenarii  -  Somnul  -  Robotul  -  Alertă !  -  Unii îmi zic Charon...  -  Capsula  -  Meduza (IX)  -  Meduza (I)


New spin on how stars are born

News Team



Publicat Duminică, 11 Noiembrie 2007, ora 09:05

      Invisible magnetic field lines twisted like long ropes of DNA help stars spiral into life, according to a new model.
     
      New stars form from enormous clouds of gas and dust collapse under their own gravity into dense spheres. The packed cores are ignited by thermonuclear reactions. As they collapse, the clouds rotate, and like an ice skater pulling in his arms while spinning, rotation speed increases as the collapsing cloud gets smaller.
     
      Some of this rotation energy, called angular momentum, must be dissipated before the star can contract completely. How this happens, though, is unknown.
     
      "Given the size difference between an ordinary star like our sun and a typical molecular cloud, if the rotation was allowed to increase as the cloud collapsed, the [apparent] centrifugal forces would never allow the material to collapse into anything small enough to form a star," said study team member Antonio Chrysostomou at the University of Hertfordshire in the United Kingdom. "Hence, there needs to be a mechanism present which removes this angular momentum."
     
      A new model by Chrysostomou and colleagues suggests excess material and energy are borne away from the protostar along helical magnetic field lines that surround the star. This stellar exodus carries away enough angular momentum to allow the spinning cloud to undergo the final phase of collapse necessary to become a star.
     
      Their findings are detailed in the Nov. 1 issue of the journal Nature.
     
      Our Milky Way is filled with magnetic fields, which are generated any time charged particles move about. The new model predicts that field lines around a cloudy stellar womb get twisted by the womb's rotation.
     
      "The presence of ionized particles in the cloud will effectively drag the field around with it, thereby twisting it up," Chrysostomou told SPACE.com.
     
      The team's new model is based on observations at the Anglo-Australian Observatory of the infrared light emitted by particles surrounding HH 135-136, a protostar cloaked in a molecular cloud located roughly 9,000 light-years away. They specifically examined which direction the particles faced.
     
      "Interstellar grains become aligned to the magnetic field," Chrysostomou said. "They essentially behave as a Polaroid to radiation which passes through them. By measuring the degree of polarization we can deduce something about the magnetic field structure."
     
      The team's new model predicts helical magnetic field lines around HH 135-136 extend some 50,000 AU from the protostar. One AU is equal to the distance between the Earth and the sun. Material is thought to be ejected from the system at more than 200,000 mph (100 kilometers per second).
     
      Chrysostomou predicts that eventually the magnetic field lines will straighten out to become like the general galactic magnetic field. However, as observations of our sun show, magnetic field lines situated close to the star will remain a little curved.

© Copyright News Team
Sursa :   LiveScience.com
Nu există nici un comentariu  
Comentează articolul  Spune-ţi părerea

    Toate câmpurile sunt obligatorii.
    Comentariul nu poate include link-uri.
    Dacă sunteţi logat, numele şi emailul se autocompletează.
    Comentariile sunt moderate şi vor apărea pe site numai după aprobare.

Nume :
Email (nu va fi afişat) :
Comentariu :


   SFera Online v.3 Final Edition - arte vizuale şi literatură de anticipaţie
      Toate drepturile rezervate. Copyright © 2001 - 2011 SFera Online | © 2011 - 2015 Arhiva SFera Online